bootstrap结果输出:点估计:总体统计量的估计值置信区间:估计值的可能性范围p 值:假设无显着差异时,观测统计量出现的概率通过重复采样,bootstrap提供点估计、置信区间和p值,帮助评估总体统计量的准确性和假设的有效性。

(图1)

Bootstrap 结果的输出

Bootstrap 是一个用于数据采样的统计方法。通过从原始数据中重复采样,它可以提供对总体统计量的估计。

输出格式

Bootstrap 结果通常以以下格式输出:

  • 点估计:原始数据样本的统计量的估计值。
  • 置信区间:对总体统计量的置信区间,表示估计值的可能性范围。
  • p 值:假设 H0(无显着差异)为真时,观测统计量出现的概率。

输出 interpretation

  • 点估计:它代表总体统计量的最佳估计值,但存在一个置信区间。
  • 置信区间:它表示点估计的精度。置信区间越窄,估计就越精确。
  • p 值:它用于检验假设 H0。p 值小于预定义的显著性水平 (例如,0.05) 表明 H0 可能不成立。

示例

假设我们有 100 个数据的样本,平均值为 50。通过 Bootstrap,我们可以生成 1000 个重复样本,每个样本的平均值。Bootstrap 结果可能是:

  • 点估计:52
  • 置信区间:[51, 53]
  • p 值:0.02

解释:

  • 点估计表明总体平均值约为 52。
  • 置信区间表明,我们对总体平均值的估计具有 95% 的信心,它介于 51 和 53 之间。
  • p 值为 0.02 表示当 H0 为真时,观察到平均值 52 的概率很低,这表明 H0 可能不成立。

以上就是bootstrap结果怎么输出的详细内容,更多请关注其它相关文章!

1、本站目前拥有近 1000+ 精品收费资源,现在加入VIP会员即可全部下载。
2、本资源部分来源其他付费资源平台或互联网收集,如有侵权请联系及时处理。
SEA模板网 » bootstrap结果怎么输出

发表评论

加入本站VIP会员订阅计划,海量资源免费查看

目前为止共有 3654 位优秀的VIP会员加入! 立刻加入VIP会员